Metagenomic analysis of the complex microbial consortium associated with cultures of the oil‐rich alga Botryococcus braunii

نویسندگان

  • Christine Sambles
  • Karen Moore
  • Thomas M Lux
  • Katy Jones
  • George R Littlejohn
  • João D Gouveia
  • Stephen J Aves
  • David J Studholme
  • Rob Lee
  • John Love
چکیده

Microalgae are widely viewed as a promising and sustainable source of renewable chemicals and biofuels. Botryococcus braunii synthesizes and secretes significant amounts of long-chain (C30 -C40 ) hydrocarbons that can be subsequently converted into gasoline, diesel, and aviation fuel. B. braunii cultures are not axenic and the effects of co-cultured microorganisms on B. braunii growth and hydrocarbon yield are important, but sometimes contradictory. To understand the composition of the B. braunii microbial consortium, we used high throughput Illumina sequencing of metagenomic DNA to profile the microbiota within a well established, stable B. braunii culture and characterized the demographic changes in the microcosm following modification to the culture conditions. DNA sequences attributed to B. braunii were present in equal quantities in all treatments, whereas sequences assigned to the associated microbial community were dramatically altered. Bacterial species least affected by treatments, and more robustly associated with the algal cells, included members of Rhizobiales, comprising Bradyrhizobium and Methylobacterium, and representatives of Dyadobacter, Achromobacter and Asticcacaulis. The presence of bacterial species identified by metagenomics was confirmed by additional 16S rDNA analysis of bacterial isolates. Our study demonstrates the advantages of high throughput sequencing and robust metagenomic analyses to define microcosms and further our understanding of microbial ecology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrocracking of the oils of Botryococcus braunii to transport fuels.

Hydrocarbon oils of the alga Botryococcus braunii, extracted from a natural "bloom" of the plant, have been hydrocracked to produce a distillate comprising 67% gasoline fraction, 15% aviation turbine fuel fraction, 15% diesel fuel fraction, and 3% residual oil. The distillate was examined by a number of standard petroleum industry test methods. This preliminary investigation indicates that the ...

متن کامل

Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii

A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe.

متن کامل

Utilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load

Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...

متن کامل

Utilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load

Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...

متن کامل

A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii

Botryococcus braunii is a colony-forming green alga that accumulates large amounts of liquid hydrocarbons within the colony. The utilization of B. braunii for biofuel production is however hindered by its low biomass productivity. Here we describe a novel bacterial ectosymbiont (BOTRYCO-2) that confers higher biomass productivity to B. braunii. 16S rDNA analysis indicated that the sequence of B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017